Investigation of the Mechanical Properties of the Human Osteosarcoma Cell at Different Cell Cycle Stages "2279
نویسندگان
چکیده
The mechanical properties of a single cell play substantial roles in cell mitosis, differentiation, and carcinogenesis. According to the difference of elastic modulus between the benign cell and the tumor cell, it has been shown that the mechanical properties of cells, as special biomarkers, may contribute greatly to disease diagnosis and drug screening. However, the mechanical properties of cells at different cell cycle stages are still not clear, which may mislead us when we use them as biomarkers. In this paper, the target regions of the human osteosarcoma cell were precisely scanned without causing any cell damage by using an atomic force microscopy (AFM) for the first time. Then, the elasticity properties of the human osteosarcoma cells were investigated quantitatively at various regions and cell cycle stages. The 32 × 32 resolution map of the elasticity showed that the elastic modulus of the cells at the interphase was larger than that at the telophase of mitosis. Moreover, the elastic modulus of the cell in the peripheral region was larger than that in the nuclear region of the cell. This work provides an accurate approach to measure the elasticity properties of cells at different stages of the cell cycle for further application in the disease diagnosis.
منابع مشابه
Antibacterial Activity of Elephant Garlic and Its Effect against U2OS Human Osteosarcoma Cells
Objective(s): The present study was designed to investigate the antibacterial function and pharmacological effect of elephant garlic (Allium ampeloprasum var. ampeloprasum) on U2OS human osteosarcoma cells. Materials and Methods: Seven kinds of bacteria were reconstituted, inoculated and tested in this research to evaluate elephant garlic antibacterial activity. By the means ...
متن کاملSupernatants From Human Osteosarcoma Cultured Cell Lines Induce Modifications in Growth and Differentiation of THP-1 Cells and Phosphoinositide- Specific Phospholipase C Enzymes
Introduction: Introduction: Molecular components within the microenvironment act upon cell growth, survival/apoptosis, and proliferation. Immune system cells respond to molecules produced by the tumor and released in the surrounding microenvironment, such as cytokines, chemokines, and growth factors. This study aimed to identify the effects of tumor environment on monocyte-macrophage cell linea...
متن کاملSerum Factors Induced the Nuclear Location of Annexin V in the Human Osteosarcoma Cell Line (MG-63)
Calcium-binding proteins play essential roles in the cell. One important class of calcium-binding proteins is the annexin family. This is a family of 13 proteins, which binds to phospholipids in a calcium-dependent manner. Osteosarcoma cell line (MG-63) is a transformed cell that has many characteristics of the differentiated cell, such as a considerable serum dependency in its growth rate. Usi...
متن کاملSupernatants From Human Osteosarcoma Cultured Cell Lines Induce Modifications in Growth and Differentiation of THP-1 Cells and Phosphoinositide- Specific Phospholipase C Enzymes
Introduction: Introduction: Molecular components within the microenvironment act upon cell growth, survival/apoptosis, and proliferation. Immune system cells respond to molecules produced by the tumor and released in the surrounding microenvironment, such as cytokines, chemokines, and growth factors. This study aimed to identify the effects of tumor environment on monocyte-macrophage cell linea...
متن کاملAnticancer properties of chitosan against osteosarcoma, breast cancer and cervical cancer cell lines
Background: Cancer refers to the abnormal growth of cells and is still the most common cause of morbidity in world. The purpose of this study was to determine cytotoxicity effect of high molecular weight (HMWC) and low molecular weight of chitosan (LMWC) on three cancerous cell lines MCF-7, HeLa and Saos-2 with different histological origin. Methods: The anticancer property of two types of chi...
متن کامل